from its β isomer by filtration chromatography.⁹ Compound *5* was obtained from **2** in **85%** overall yield. We next faced regiospecific ring opening of the epoxide residue in **5** which was accomplished by reaction of the epoxide with **2** equiv of sodium phenyl selenide in ethanol at 80 "C for **3** h-a process affording **6** in **82%** yield from *5.'O* Sodium bicarbonate buffered **95%** m-CPBA oxidation of **6** in dilute methylene chloride solution at **-78** "C followed by warming to **22** "C gave a **95%** yield of the corresponding diene **7.** Submission of this material to further oxidation with **95%** m-CPBA in methylene chloride at -40 "C selectively gave the epoxide **8** in **77%** yield. Esterification of the primary alcohol present in **8** was accomplished with benzoyl chloride in methylene chloride at -40 °C in the presence of triethylamine to give an 85% yield of **9.** This substance was desilylated at $0 °C$ in methanol with 5% HC1, and the resulting diol **10** then reacted with acetic anhydride in pyridine to give after chromatography pure senepoxide **(I),** mp **97-98** "C in **83%** yield from **9.** Senepoxide prepared in this manner agreed in all respects to both spectra and a sample of racemic **1** kindly provided by Professor B. Ganem.¹¹

To complete a formal total synthesis of crotepoxide, we treated compound *5* **as** its lithium alkoxide salt with benzyl bromide and HMPA at **-78** "C to obtain in **67%** yield compound **11.** Treatment of **11** with **2** equiv of sodium phenyl selenide gave the ring-opened substance **12** (80% yield) which on oxidative-elimination with **95%** m-CPBA afforded the diene **13** in **87%** yield. Desilylation of **13** in methanol with **5%** HCl gave the diene-diol **14** in essentially quantitative yield. This material proved identical in all respects with both a sample and spectra of this compound kindly provided by Professor J. D. White, who has reported the conversion of **14** into crotepoxide.12

Lastly, we carried out a formal synthesis of pipoxide by reacting compound **6** with benzoyl chloride in methylene chloride containing triethylamine at 22 °C to obtain 15 in **95%** yield. Treatment of **15** with **95%** m-CPBA resulted in the formation of the corresponding diene which was then desilylated in methanol with 5% HC1 to give **16** in **78%** yield from **15.** Compound **16** proved identical with both sample and spectra kindly provided by Professor B. Ganem, who has converted **16** into pipoxide.'l

(9) All new compounds gave satisfactory spectral and physical data. **(IO)** Sharpless, K. B.; Lauer, R. F. *J. Am. Chem.* SOC. **1973,95,2697. (11)** We thank Professor B. Ganem for a sample of senepoxide as well spectra of it. We **also** thank Professor Ganem for a sample and spectra of compound **16.**

(12) We thank Professor J. D. White for a sample and spectra of compound **14.**

R. H. Schlessinger,* **A.** Lopes

Department *of* Chemistry University *of* Rochester Rochester, New *York* **14627** Received *August* **24,1981**

Thiol Esters from Sulfoxides via Rearrangement of Sulfoxide Phosphines **to** Sulfide Phosphine Oxides

Summary: Treatment of α -lithio sulfoxides with (1) ClP- $(C_6H_5)_2$ and (2) I_2 (isolate sulfide phosphine oxide 3) followed by (3) C_4H_9Li and (4) O_2 affords thiol esters.

Sir: The Pummerer oxidation converts sulfoxide α -carbon into the aldehyde or ketone oxidation state. However, there is no generally applicable method known for further oxidation to give carboxylic acid derivatives.¹ We report a method for conversion of sulfoxides into thiol esters that are versatile carboxylic acid equivalents. This technique depends on the observation that sulfoxide phosphines **2** rearrange readily to the isomeric sulfide phosphine oxides **3.** The latter can be oxygenated via the α -lithio derivatives **4** to give the thiol esters **5.**

Thiol esters have not previously been made by Horner-Bestmann oxygenation² of anions similar to 4 although other carbonyl compounds have been prepared from diphenylphosphine oxide or phosphonate anions.³ Best results are obtained by bubbling oxygen into a THF solution of cold anion at individually optimized temperatures until the yellow-orange anion color fades. The readily available \dot{A}^4 with R = $\dot{C}H_3$ and R' = $CH_2CH_2C_6H_5$ affords the thiol ester in **79%** yield **(93%** based on recovered **3)** when oxygenation is performed at -100 °C.^{5,6} This optimized procedure is generally effective when $R = alkyl$, but aryl sulfoxide anions $(4, R = C_6H_5, R' = alkyl)$ are less reactive and oxygenation at -44 °C is usually required.

The desired overall conversion of sulfoxides to thiol esters can now be achieved by combining the oxygenation process with a unique and effective method for introducing esters can now be achieved by combining the oxygenation
process with a unique and effective method for introducing
phosphorus at the correct oxidation state, $1 \rightarrow 3$. Typical
a lithic sulforides need repidly with $CDO(C, H)$ α -lithio sulfoxides react rapidly with ClP(C₆H₅)₂ to give sensitive sulfoxide phosphines **2** at **-78** "C. The latter are reasonably stable when pure,7 but rearrangement to **3 occurs** slowly in the crude product at **20** "C (variable yield) or, more efficiently, in the presence of iodine at 0-20 °C.⁸

(1) Pummerer oxidation to orthoformic acid derivatives is a special case which succeeds because elimination pathways are not available to the Pummerer intermediate; Dinizo, S. E.; Watt, D. S. *Synthesis* **1977, 181.**

(2) Horner, L.; Hoffmann, H.; Klahre, G.; Toscano, V. G.; Ertel, H. Chem. *Ber.* **1961,94,1987.** Bestmann, H. **J.** *Angew. Chem., Int. Ed. Engl.* **1965, 4, 830.**

(3) Davidson, A. H.; Warren, S. *J. Chem.* SOC., *Chem. Commun.* **1975, 148.** Zimmer, H.; Koenigkramer, R. E.; Cepulis, R. L.; Nene, D. M. J. Org. *Chem.* **1980,45, 2019.**

(hem. 1980, 45, 2019)

(4) Preparation: Ph₂PLi + Br(CH₂)₃Ph → Ph₂P(CH₂)₃Ph; H₂O₂ → Ph₂P(CH₂)₃Ph; LDA/CH₃SCH₃ → 4; mp 139-142 °C.

^{Ph}2PO(CH₂)₃Ph; LDA/CH₃SSCH₃ → 4; mp 139-142 °C.

(5) The intermediate oxygenation product fragments very rapidly to thiol ester at **-78** "C according to quenching experiments. No peroxidic products have been detected.

(6) CAUTION: Oxygenation of THF solutions is inherently dangerous; the exit **gases** should be diluted with **N2** to minimize risks, and a good safety shield should be used.

(7) Isolation of sulfoxide phosphines 2 is possible by rapid chromatography or by crystallization but is not recommended due to losses induced by decomposition. The isomers 2 and 3 are most easily distinguished by systematic differences in the HCP coupling constant. Couguished by systematic differences in the HCP coupling constant. Coupling is small in 2 (<4 Hz) and large in 3 (>7 Hz). Typical examples: 2 (R = t-C₄H₉, R' = i-C₃H₇), mp 95-97 °C dec; δ (PCH) 2.88 (br s, J_{PH} < 2 Hz); 3 (R = t-C₄H₉, R' = i-C₃H₇), sublimes without melti $n\text{-}C_3H_7$), mp 113-115⁵C dec, δ (PCH) 3.0 (dt, $J_{PH} = 4$ Hz, $J_{HH} = 7$ Hz);
3 (R = t-C₄H₃, R' = n-C₃H₇) mp 151-152.5 °C, δ (POCH) 3.02 (ddd, J_{PH} = 15.1 Hz, $J_{HH} = 8.8$, 4.0 Hz); 2 (R = C₆H₅), R' = spectra in CDCl3; satisfactory elemental composition for **all** compounds). δ (POCH) 3.04 (dd, J_{PH} = 13.6 Hz, J_{HH} = 2.6 Hz); **2** (R = t-C₄H₉, R' = **154-156** "C), B(P0CH) **2.79** (dq, *JPH* = **9.2** H?, *JHH* = **7.4** Hz) (NMR

(8) Representative procedure for conversion of sulfoxides into 3: A solution of sulfoxide (5 mmol) in dry THF (10 mL or more if needed to dissolve anion) was cooled to -78 °C and alkyllithium (5.5 mmol) was deded dropwise

Table I

Iodine (1 equiv) was added to sulfoxide phosphine at 0 $^{\circ}$ C (ref 8). $^{\circ}$ Alternate preparation of 3 was used (ref 4). $<$ 0.5 h sufficient to discharge anion color. $\frac{d}{ }$ Isolated yields; recovery of 3 is typically \leq 15%. $\frac{e}{ }$ Diastereomer 7 is isolated, 71% without I, treatment; see text for oxygen transfer discussion. $\,$ Inverse addition (anion to O, saturated THF) was used; 0, addition to anion gave 33% thiolactone, 40% recovered **9.**

Treatment of α -lithiothiane S-oxide 6 with ClP(C₆H₅)₂ affords an unusually stable phosphine sulfoxide **7,9** single diastereomer. The trans stereochemistry is assigned by

analogy to previous reactions of **6** or related thiane S-oxide anions with electrophiles 10 and is tentative. In the presence of KO-t-Bu in THF, **7** equilibrates with a new isomer **89** (ca. 1:l). Under representative conditions for oxygen transfer, **0.2** equiv of iodine/THF/O "C, **8** is converted **into g9** (99% isolated) within **1-2** min. In contrast, **7** requires 5 h for complete conversion, and the complex product mixture includes **9 (35%)** and the sulfoxide phosphine oxide **lo9** (16%). The possibility of partial conversion of **7** to 8 under these conditions can not be ruled out.

These experiments show that intermolecular oxygen transfer occurs to some extent with **7** (as evidenced by formation of 10) and suggest that an intramolecular mechanism is responsible for oxygen transfer with **8** and conformationally unrestricted acyclic analogues. The reactivity difference between **7** and **8** is consistent with the stereochemical assignment if the internal oxygen transfer mechanism resembles the general scheme proposed for the intermolecular deoxygenation of sulfoxides by $Ph_3P/I_2/$ NaI.¹¹ A reasonable rationale involves 11 and 12 as key intermediates in the rearrangement.

Various sulfoxides have been converted into thiol esters by using this two-step sequence (Table I), 12 as have more complex functionalized sulfoxides to be described elsewhere. Isolated yields of thiol esters are in the 60-85% range, and the only other significant product in typical oxygenation mixtures is unreacted **3.**

Acknowledgment. This work was supported by a grant from National Science Foundation.

E. Vedejs,* H. Mastalerz *G.* **P. Meier, D. W. Powell**

S. M. McElvain Laboratory *of* Organic Chemistry and Chemistry Department University *of* Wisconsin Madison, Wisconsin **53706**

Received September 9, 1981

and iodine (5 mmol) was added. After 5 min, sufficient aqueous 10% sodium thiosulfate was added to decolorize the iodine. Products were sodium thiosulfate **was** added to decolorize the iodine. Products were isolated by extraction (CH2C12) and standard purification methods.

^{(9) 7:} mp 110-111 °C; δ (PCH) 3.67 ppm (br s). 8: mp 144-146 °C;
 δ (PCH) ~3.18 (br d, $J_{HH} = 12.1$ Hz, $J_{PH} = 2.5$ Hz) or 3.09 (br d, $J_{HH} = 12.1$ Hz, $H_{PH} = 2.5$ Hz) or 3.09 (br d, $J_{HH} = 12.1$ Hz, $J_{PH} = 2.5$ Hz) o $CH₂SO$).

⁽IO) Bory, S.; Lett, R.; Moreau, B.; Marquet, A. Tetrahedron Lett. 1972, 4921. Lett, R.; Bory, S.; Moreau, B.; Marquet, A. *Bull. Chim. Soc.*
Fr. 1973, 2851. Bory, S.; Marquet, A. *Tetrahedron Lett.* 1973, 4155.
Biellmann, J. F., Vicens, J. J. *Ibid*. 1978, 467. Cere, V.; Paolucci, C Pollicino, S.; Sandri, E.; Fava, A. *J. Org. Chem.* **1978, 43, 4826.**

⁽¹¹⁾ Olah, **G. A.;** Gupta, B.; Narang, *S.* C. Synthesis **1978, 137. (12)** Specialized examples of the conversion of sulfide to thiol ester have been described. (a) diazosulfoxides: Hodson, D.; Holt, G. *J.* Chem. Soc. C 1968, 1608. Ebbinghaus, C. F.; Morrissey, P.; Rosati, R. L. J. Org. Chem. 1979, 44, 4697. (b) α -Chloro sulfoxides: Bohme, H.; Wilke, H.-J. Justus Liebigs Ann. Chem. 1978, 1123. More, K. M.; Wemple, J. J. Org. Che **1978,** 11, 171.